Diatomic Molecule Symmetry Eigenfunctions by Direct Diagonalization

Introduction

Recently we reported a procedure [1] and computer program to obtain atomic $L-S$ eigenfunctions by direct diagonalization of the operator $\mathbf{L}^{2}+(1 / 20) \mathbf{S}^{2}$. Such eigenfunctions are required in order to obtain correlated wave functions for many-electron atoms. This program [1] has made it possible for us to perform configuration interaction (CI) calculations [2] which would not otherwise have been feasible. By using symmetry-adapted configurations, rather than simple Slater determinants, the size matrix to be diagonalized is greatly reduced. A recent neon atom calculation [3] shows the usefulness of this approach. In this calculation [3] 8392 distinct Slater determinants were used, but yielded only $434{ }^{1} S$ L-S configurations.
It should be noted that most of the previous work [4-8] on the construction of symmetry-adapted functions makes use of projection operators [9]. Reference [1] indicates that, for the atomic case, direct diagonalization compares quite favorably with the use of projection operators. Gershgorn and Shavitt [10] have discussed another method for constructing molecular symmetry-adapted functions.

Diatomic Molecule Symmetry

For the computation of accurate CI wave functions for diatomic molecules, it is helpful to obtain symmetry-adapted functions for diatomic molecules. For a Σ state of a homonuclear diatomic molecule, the nonrelativistic electronic Hamiltonian

$$
\begin{equation*}
H=\sum_{i}\left(-\frac{1}{2} \Delta_{i}{ }^{2}-\frac{Z_{a}}{r_{i a}}-\frac{Z_{b}}{r_{i b}}\right)+\sum_{i<j} \frac{1}{r_{i j}} \tag{1}
\end{equation*}
$$

commutes with the operators $\mathrm{S}^{2}, S_{z}, C_{\phi}, \sigma_{v}$, and i where

$$
\begin{align*}
\mathbf{S}^{2} \psi & =S(S+1) \psi, \tag{2}\\
S_{z} \psi & =M_{\mathrm{s}} \psi, \tag{3}\\
C_{\phi} \psi & =e^{i \triangle \phi} \psi, \tag{4}\\
\sigma_{v} \psi & = \pm \psi, \tag{5}\\
i \psi & = \pm \psi . \tag{6}
\end{align*}
$$

For heteronuclear diatomics, the operator i does not commute with $H . \sum$ states ($\Lambda=0$) can be classified as + or - , depending on the effect of the operator σ_{v} on the wave function. By utilizing this σ_{v} symmetry, we divide by two the size of the CI matrix to be diagonalized. In addition, this type of partitioning of the Hamiltonian matrix into Σ^{+}and Σ^{-}blocks also eliminates the problem (encountered when a number of states of Σ symmetry are being investigated) of differentiating between the + and - states. For states with $|\Lambda|>0$, however, it is not possible to simultaneously diagonalize C_{ϕ} and σ_{v}. And, in fact, all the symmetry of the diatomic molecule is satisfied without the use of σ_{v}.
Therefore, rather than simple single Slater determinants, our configurations should be symmetry-determined linear combinations of Slater determinants. These configurations should have the desired values of the quantum numbers $S, M_{s}, \Lambda,+$ or - (if appropriate), and g or u (if appropriate), respectively.

Procedure

The essence of our approach is to diagonalize the matrix of the operator $\mathbf{S}^{2} \pm(1 / 2) \sigma_{v}$, where σ_{v} is the operator that determines the + or - symmetry. For, Π, Δ, \ldots states, only the operator \mathbf{S}^{2} is diagonalized. Two FORTRAN IV computer programs [11], to construct symmetry eigenfunctions for homonuclear and heteronuclear diatomics, were written for the CDC 6600 . These programs are available from the Quantum Chemistry Program Exchange [11].

Input to the program is the orbital occupancy and the symmetry desired. For a homonuclear case, the O_{2} molecule, one might desire all linearly independent ${ }^{3} \Sigma_{g}^{-}$configurations arising from the orbital occupancy $1 \sigma_{g}{ }^{2} 1 \sigma_{u}{ }^{2} 2 \sigma_{g}{ }^{2} 2 \sigma_{u}{ }^{2} 3 \sigma_{g} 3 \sigma_{u}$ $1 \pi_{g}{ }^{3} 1 \pi_{u}{ }^{3}$. Given the input, the program proceeds in three steps:
(1) All possible Slater determinants D_{i} with the proper values of M_{s}, Λ, and g or u are generated for the given orbital occupancy. This step guarantees eigenfunctions of S_{z}, C_{ϕ}, and i. For reasons which will be obvious later, we always choose $M_{s}=S$. In HEDIAG [11] the g or u determination is omitted.
(2) All matrix elements $\left\langle D_{i}\right| \mathbf{S}^{2} \pm(1 / 2) \sigma_{v}\left|D_{i}\right\rangle$ are computed. The \mathbf{S}^{2} matrix elements are obtained by the well-known relation

$$
\begin{equation*}
\mathbf{S}^{2}=S^{+} S^{-}+S_{z}{ }^{2}-S_{z} \tag{7}
\end{equation*}
$$

where S^{+}and S^{-}are the many-electron raising and lowering operators. The matrix element $\left\langle D_{i}\right| \sigma_{v}\left|D_{j}\right\rangle$ has the value $0,+1$, or -1 .
(3) The matrix $\left\langle D_{i}\right| \mathbf{S}^{2} \pm(1 / 2) \sigma_{n}\left|D_{j}\right\rangle$ is diagonalized, and the eigenvectors corresponding to the lowest eigenvalue are the desired symmetry-adapted con-
figurations. The above useful fact is guaranteed by choosing $M_{s}=S$ in step 1 and by operating with $\mathbf{S}^{2}+(1 / 2) \sigma_{v}$ for - states and $\mathbf{S}^{2}-(1 / 2) \sigma_{v}$ for + states.

Output for the above example is given in Fig. 1. For a similar number of Slater determinants and linearly independent configurations, computation times are minimal and comparable to those given in Reference 1.

HCPONUCLEAR DIATOMIC EIGENFUNCTIUNS GY OIRECT CIAGONAL IZATICN
BY MENRY F. SCHAEFER III, UNIVERSITY OF CALIFORNIA, BERKELEY
THE NUABER UF ELECITRONS IS IS
ML $=0 \quad \$=M S=1.0$ - STATE G STATE
THE POSS:BLE SLATER DETERMINANTS CORRESPONDINE TO THE GIVEN ORBITAL CCCUPANCY AND YALUES OF ML PAS, AND G OR U GRE $15 G \quad 15415 U^{25 G} 25 G^{25 U} 25 U^{35 G} 3 S U^{2 \rho G} 2 P G G^{2 \rho G} 2 P U U^{2 P U} 2 P U$

1. $A B A B A B A+A-B+A+B$
2. $A \quad B \quad A \quad B \quad A \quad B \quad A \quad B \quad A \quad A-A-B+B \quad-A+A \quad B$
3. $A B A B A B A+A \rightarrow A-A-B+B$
4. $A \quad B \quad A \quad B \quad A \quad B \quad A \quad B \quad A \quad A-B+A+B-A-B \quad 4$
5. $A \quad B \quad A \quad B \quad A \quad B \quad A \quad B \quad A \quad B-A-B+A-A+A+B$

6. $A \quad A \quad A \quad B \quad A \quad B \quad A \quad B \quad B \quad A-A-B+A-A+A+B$
7. $A \quad B \quad A \quad B \quad A \quad B \quad A \quad B \quad B \quad A-A+A+B-A-B \quad A$

THE NUHAER OF LIWEARLY INDEPENDENT EIGENFUNCIIONS IS 3

Fig. 1. ${ }^{3} \Sigma_{g}^{-}$eigenfunctions for the orbital occupancy $1 \sigma_{g}{ }^{2} 1 \sigma_{u}{ }^{2} 2 \sigma_{g}{ }^{2} 2 \sigma_{u}{ }^{2} 3 \sigma_{g} 3 \sigma_{u} 1 \pi_{g}{ }^{3} 1 \pi_{u}{ }^{3}$. In the printout, S means σ, P means π, A means $\alpha\left(m_{s}=+1 / 2\right), B$ means $\beta\left(m_{s}=1 / 2\right)$. A minus (-) indicates $m_{l}=-1$ and a plus $(+)$ indicates $m_{l}=+1$.

Eigenvector accuracy is 13 or 14 significant figures on the CDC 6600 . As written the program requires about 20,000 words of memory. Restrictions on the program are:
(1) No more than 36 electrons outside of closed shells.
(2) No more than 100 determinants of the correct M_{s} and Λ arising from the given orbital occupancy.
(3) No more than 20 symmetry eigenfunctions arising from the specified orbital occupancy and molecular quantum numbers.

Acknowledgments

We thank the Nuclear Chemistry Division of the Lawrence Radiation Laboratory, Berkeley, for a grant of computer time. Thanks are also due to the referee, who pointed out an error in the original version of this paper.

References

1. H. F. Schaefer and F. E. Harris, J. Comput. Phys. 3 (1968), 217.
2. H. F. Schaefer and F. E. Harris, Phys. Rev. Lett. 21 (1968), 1561.
3. J. W. Viers, F. E. Harris, and H. F. Schaefer, Phys. Rev. A1 24, (1970).
4. R. K. Nesbet, J. Math. Phys. 6 (1961), 701.
5. A. Rotenberg, J. Chem. Phys. 39 (1963), 512.
6. H. F. Schaefer and F. E. Harris, Chem. Phys. Lett. 1 (1967), 407.
7. C. F. Bunge, Phys. Rev. 168 (1968), 92.
8. J. Kouba and Y. Ohrn, Int. J. Quantum Chem. 3 (1969), 513.
9. P. O. Lowdin, Phys. Rev. 97 (1955), 1509.
10. Z. Gershgorn and I. Shavitt, Int. J. Quantum Chem. 15 (1967), 403.
11. Programs HODIAG and HEDIAG, Quantum Chemistry Program Exchange, Chemistry Department, Indiana University, Bloomington, Indiana 47401.

Received: December 4, 1969
Henky F. Scharfer III*
Department of Chemistry, University of California, Berkely, California 94720

* Supported in part by the Petroleum Research Fund, administered by the American Chemical Society,

581/6/r-10

