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Diatomic Molecule Symmetry Eigenfunctions by 
Direct Diagonalization 

INTRODUCTION 

Recently we reported a procedure [l] and computer program to obtain atomic 
LS eigenfunctions by direct diagonalization of the operator L2 + (l/20) S2. 
Such eigenfunctions are required in order to obtain correlated wave functions 
for many-electron atoms. This program [l] has made it possible for us to perform 
configuration interaction (CI) calculations [2] which would not otherwise have 
been feasible. By using symmetry-adapted configurations, rather than simple 
Slater determinants, the size matrix to be diagonalized is greatly reduced. A recent 
neon atom calculation [3] shows the usefulness of this approach. In this 
calculation [3] 8392 distinct Slater determinants were used, but yielded only 
434 lS L-S configurations. 

It should be noted that most of the previous work [4-81 on the construction of 
symmetry-adapted functions makes use of projection operators [9]. Reference [l] 
indicates that, for the atomic case, direct diagonalization compares quite favorably 
with the use of projection operators. Gershgorn and Shavitt [lo] have discussed 
another method for constructing molecular symmetry-adapted functions. 

DIATOMIC MOLECULE SYMMETRY 

For the computation of accurate CI wave functions for diatomic molecules, 
it is helpful to obtain symmetry-adapted functions for diatomic molecules. For 
a C state of a homonuclear diatomic molecule, the nonrelativistic electronic 
Hamiltonian 

commutes with the operators S2, S, , C, , uz,, and i where 

(2) 
(3) 
(4) 
(5) 
(6) 



DIATOMIC SYMMETRY EIGENFLJNCTIONS 143 

For heteronuclear diatomics, the operator i does not commute with H. C states 
(II = 0) can be classified as + or -, depending on the effect of the operator u, 
on the wave function. By utilizing this 0, symmetry, we divide by two the size 
of the CI matrix to be diagonalized. In addition, this type of partitioning of the 
Hamiltonian matrix into C+ and C- blocks also eliminates the problem 
(encountered when a number of states of C symmetry are being investigated) 
of differentiating between the + and - states. For states with ( /1 I > 0, however, 
it is not possible to simultaneously diagonalize C, and cr2, . And, in fact, all the 
symmetry of the diatomic molecule is satisfied without the use of CT, . 

Therefore, rather than simple single Slater determinants, our configurations 
should be symmetry-determined linear combinations of Slater determinants. 
These configurations should have the desired values of the quantum numbers 
S, M, , (1, + or - (if appropriate), and g or u (if appropriate), respectively. 

PROCEDURE 

The essence of our approach is to diagonalize the matrix of the operator 
s2 f w uv 3 where g2, is the operator that determines the + or - symmetry. 
For, n, A,... states, only the operator S2 is diagonalized. Two FORTRAN IV 
computer programs [Ill, to construct symmetry eigenfunctions for homonuclear 
and heteronuclear diatomics, were written for the CDC 6600. These programs 
are available from the Quantum Chemistry Program Exchange [l 11. 

Input to the program is the orbital occupancy and the symmetry desired. For a 
homonuclear case, the O2 molecule, one might desire all linearly independent 
y, configurations arising from the orbital occupancy luo2 1crU2 2uU2 21.7,~ 3u, 3u, 
1 7cg3 1 7rU3. Given the input, the program proceeds in three steps: 

(1) All possible Slater determinants Dg with the proper values of M, , rl, 
and g or u are generated for the given orbital occupancy. This step guarantees 
eigenfunctions of S, , C, , and i. For reasons which will be obvious later, we always 
choose M, = S. In HEDIAG [I I] the g or u determination is omitted. 

(2) All matrix elements (Dd I S2 f (l/2) uII I Di) are computed. The S2 matrix 
elements are obtained by the well-known relation 

s2 = ST- + s,2 - s, (7) 

where S+ and S- are the many-electron raising and lowering operators. The matrix 
element (Di I CJ, I Dj) has the value 0, + 1, or - 1. 

(3) The matrix (Di I S2 f (l/2) u, I D& is diagonalized, and the eigenvectors 
corresponding to the lowest eigenvalue are the desired symmetry-adapted con- 



144 SCHAEFER 

figurations. The above useful fact is guaranteed by choosing M, = S in step 1 
and by operating with S2 + (l/2) uV for - states and S2 - (l/2) CJ, for + states. 

Output for the above example is given in Fig. 1. For a similar number of Slater 
determinants and linearly independent configurations, computation times are 
minimal and comparable to those given in Reference 1. 

FIG. 1. 3x- eigenfunctions for the orbital occupancy 1~~~1~~~2~~~20;*3~~30~1~~~1~~~. In the 
printout, S me&s G, P means T, A means a (WI, = + l/2), B means b (m, = l/2). A minus (-) 
indicates m2 = - 1 and a plus (+) indicates ml .= + 1. 

Eigenvector accuracy is 13 or 14 significant figures on the CDC 6600. As written 
the program requires about 20,000 words of memory. Restrictions on the program 
are : 

(1) No more than 36 electrons outside of closed shells. 
(2) No more than 100 determinants of the correct M, and fl arising from the 

given orbital occupancy. 
(3) No more than 20 symmetry eigenfunctions arising from the specified orbital 

occupancy and molecular quantum numbers. 
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